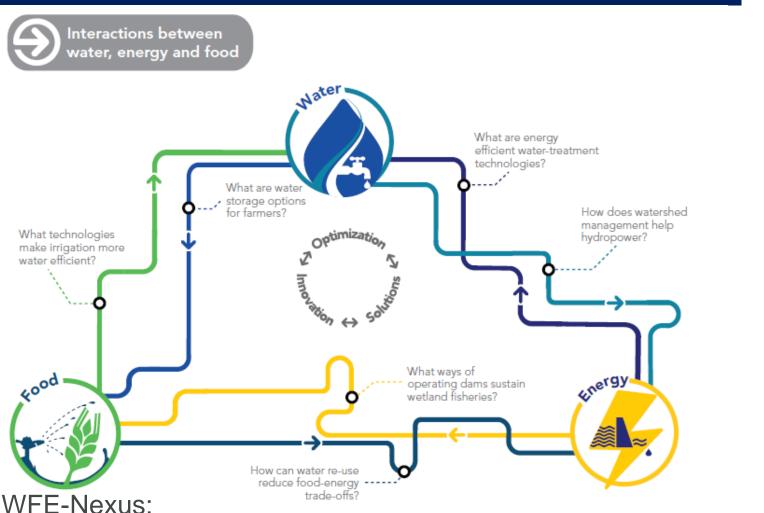


20th AfWA International Congress and Exhibition 2020 Breaking new grounds to accelerate access to water and sanitation for all in Africa


An Application of the Water-Food-Energy Nexus: Generating Value from Diversified Agriculture in Northern Uganda

23rd – 24th February 2020, Kampala, Uganda

HAGIMAR VON DITFURTH

SYSTEMS THINKING: THE WATER-FOOD-ENERGY (WFE) NEXUS

Searching for a balanced approach to achieve sustainable outcomes

Source of Graphic: IUCN, https://www.iucn.org/downloads/nexus_graphic.pdf

• "So, four years into the SDGs, how are we doing?

From a water perspective not so well. According to UN-Water's 'SDG 6 Synthesis Report 2018,' water pollution is worsening, water resource governance is weak and fragmented, and agriculture places enormous and increasing stress on freshwater supplies."

Agriculture – the problem and the cure?

WHERE ARE WE?

- It is hot (almost always)
- It is dry (not always)
- A lot of surface water (the Nile!)
- Little water management
- Most people are farmers (subsistence)
- Processed agricultural products largely imported
- Low energy access rate (10-29%)
- Deforestation for cooking fuel

WHY COMPLICATE AGRICULTURE?

4 Agricultural Interventions That Can Power Climate Adaptation

Agroforestry

Integrated systems agriculture

Sustainable forestry

Rehabilitation of degraded pastures

Source: WRI Brasil.

Source of Graphic: WRI, https://www.wri.org/blog/2019/12/4-ways-farmers-can-adapt-climate-change

AGRICULTURE – THE PROBLEM & CURE?

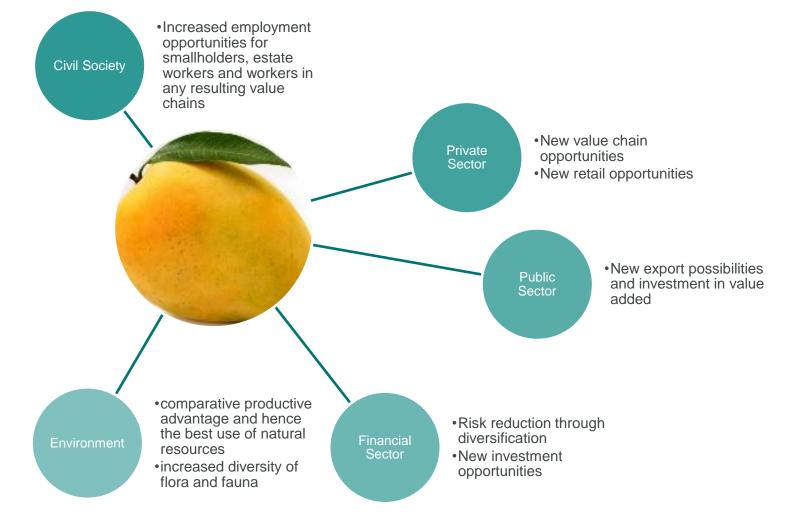
- Sustainable Fruit Production and Processing Opportunities ^(1,2,3,4,5)
 - Job creation
 - Higher yields per acre
 - Utilizing available arable land
 - Increased food security
 - Generating new income
 - Organic high-quality produce
 - Displacing imports
 - Export of higher value agricultural products
 - Increased climate change resilience
 - Increased biodiversity
 - Increased water storage and filter capability of soil

- Sustainable Fruit Production & Processing Challenges^(4,5,6,7)
 - High post-harvest losses
 - Lack of finance
 - Environmental impacts on soil and water
 - Lack of irrigation infrastructure
 - Lack of fertilizer use
 - lack of storage facilities
 - Lack of freight infrastructure
 - limited know-how regarding production practices
 - an inefficient land management system
- HOW TO DO IT RIGHT?

40⁰(

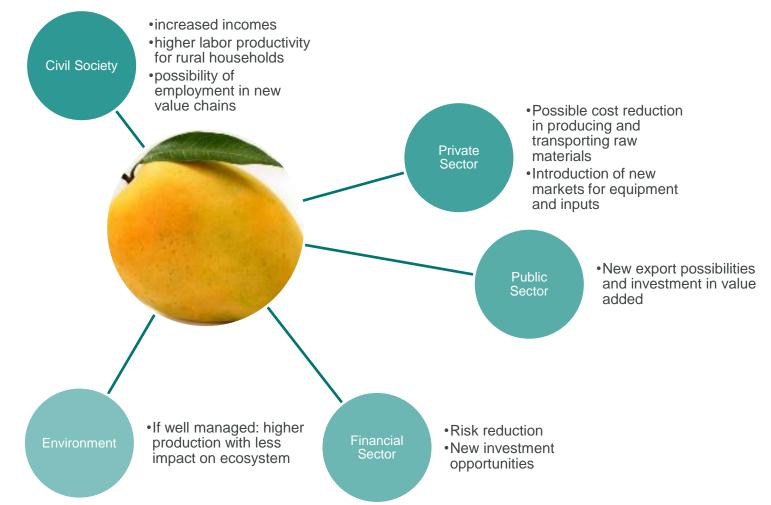
4 THEORETICAL EXAMPLES: WEF NEXUS & STAKEHOLDER ANALYSIS

ter


4. CROP DIVERSIFICATION - IMPACT ON WFE NEXUS

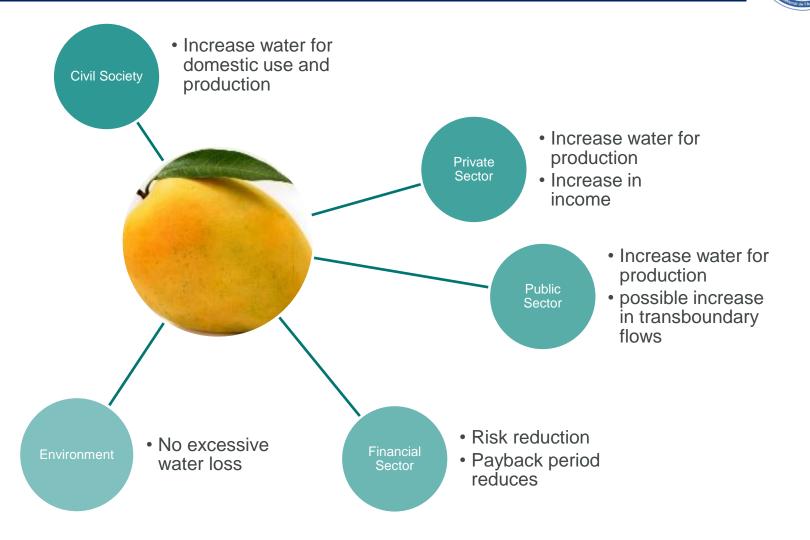
- Water: POSITIVE,
 - improve local micro-climate,
 - reduce agricultural water demand and/or increase the economic efficiency of water used
- Food: POSITIVE, increased productivity
- Energy: potentially NEGATIVE,
 - because high added value crops may need more energy along the value chain (trade off),
 - but potentially POSITIVE, if diversified crops include bio-energy crops.

4. CROP DIVERSIFICATION – IMPACT ON STAKEHOLDER CLASSES


3. INTENSIFICATION - IMPACT ON WFE NEXUS

- Water: NEGATIVE, because of withdrawals for irrigation
- Food: POSITIVE, increased productivity
- Energy: potentially NEGATIVE, because there is less water for energy production, however a net gain in biomass may offset this to a certain degree.

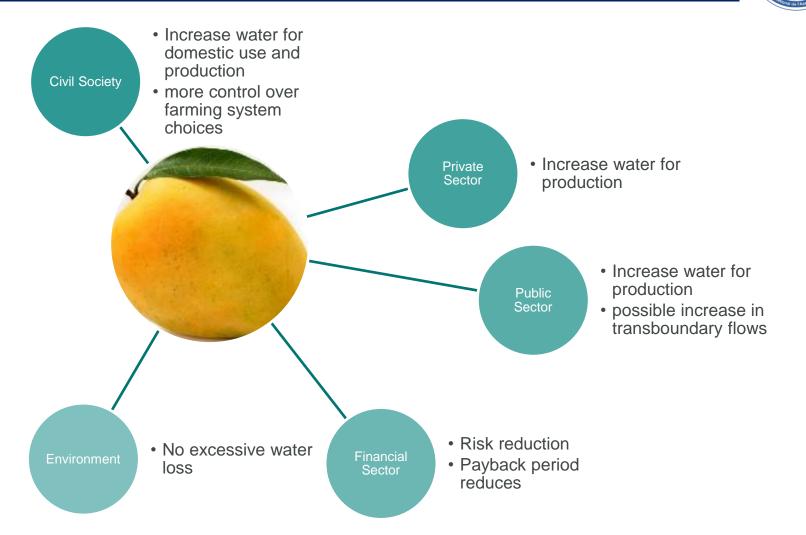
3. INTENSIFICATION – IMPACT ON STAKEHOLDER CLASSES



1. INCREASED IRRIGATION EFFICIENCY - IMPACT ON WFE NEXUS

- Water: POSITIVE, but only if saved water is reallocated wisely (i.e. longitudinally not transversely)
- Food: potentially POSITIVE, if the saved water is used for irrigation, and if the more efficient use of water leads to yield increases and improved uniformity of distribution
- Energy: NEGATIVE, because increased precision needs more energy (trade off), but potentially POSITIVE if the saved water is reallocated via hydropower installations (synergy). Alternative: solar pumps provide power without negative impact on food or water

1. INCREASED IRRIGATION EFFICIENCY – IMPACT ON STAKEHOLDER CLASSES



2. IRRIGATION ON DEMAND - IMPACT ON WFE NEXUS

- Water: POSITIVE, because withdrawals for irrigation will be minimized
- Food: potentially POSITIVE, because more water is available for irrigation expansion and every farmer gets the water he or she needs and has independent choice of farming system
- Energy: NEGATIVE, because irrigation on demand needs more energy. Alternative: solar pumps provide power without negative impact on food or water (synergy)

2. IRRIGATION ON DEMAND – IMPACT ON STAKEHOLDER CLASSES

40°C

SUMMARY OF EFFECTS

A CASE FOR FRUIT PRODUCTION (1,2,3)

- Contribute to soil fertility
- Contribute to biodiversity
- Prevent soil erosion
- Increased food security
- Diversified diet (vitamins & minerals!)

400d

- improve the local micro-climate by reducing local temperature and increasing precipitation & water availability
- Increase water filtration capability
- Increased catchment management
- Energy -
 - Increased firewood and charcoal source
 - Renewable energy can be utilized for production and home use

Socio-Economic & Environment

- Increased production & income
- Increased investment capability (i.e. renewable energy)
- Diversified production (NURDS)
- Increase of jobs
- Strengthening of local food systems
- Increase of export opportunities
- Increased climate change resilience
- Secure biodiversity
- Sustainable ecosystem services

£00°

THE WAY FORWARD

ter

THE WAY FORWARD

- Data collection in the field
- More comprehensive mapping / stakeholder mapping
- Verification of results via on the field research at smallholder farms and data collection
- Research on policy coherence
- How to handle lack of enforcement of policies/laws

20thAfWA CONGRESS

-YOU ARE WELCOME -

SITUATION IN UGANDA

- Location & Climate:

 on the East African Plateau (at 1,000-1,500m over sea level), favorable climate (allows agricultural production all year around), dry and wet seasons, average temperatures range between 20 °C and 25 °C ⁽¹⁾

- Water:

- annual rainfall ranges between 500 and 2,800 millimeters, direct rainfall most important water source⁽¹⁾
- 5% of surface area is covered by open water and 13% by wetlands ⁽²⁾

- Energy:

- Energy access rate of 29%, in rural areas 10%
- 95% of the population use wood or charcoal for cooking
- **Food:** ^(3,4,5)
 - In 2017/2018 agriculture accounted for roughly 20 percent of Ugandan GDP and more than 40% of export earnings.
 - about 70% of the population is employed in agriculture
 - 35% of available 80% of arable land is cultivated
 - Processed fruit products largely imported (i.e. juice) to meet local demand

SITUATION IN NORTHERN UGANDA^(1,2,3,4)

- Development:

- Least developed region in Uganda
- High unemployment of especially young population
- High climate change vulnerability of population
- Water:
 - Little to no wastewater management in rural areas
 - Water supply through surface and ground water abstraction (boreholes)
 - Wetland degradation through unformal settlements, waste and sewerage disposal
- Energy:
 - Deforestation due to charcoal and firewood production
 - Energy access rate 10%, intermittent energy supply
- Food:
 - Small holder farming and subsistence agriculture prevalent (80% of population)
 - Little to no irrigation schemes

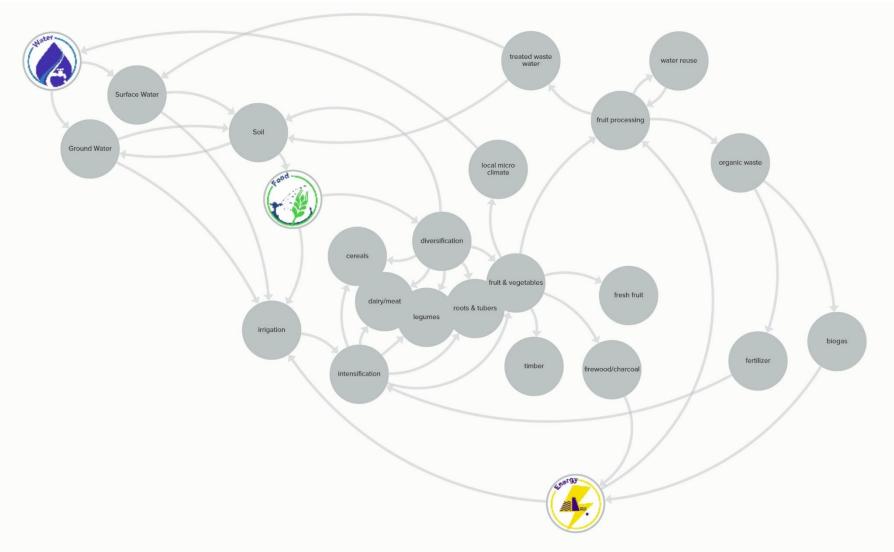
A CASE FOR FRUIT PROCESSING (1,2,3,4)

Reduction of post-harvest loss Increased food security

- Diversified diet
- Residuals can be used for energy production (biogas) and as organic fertilizer

- Excess water content after production can be reintroduced into the local watershed
- Employees are sensitized towards sustainable water management
- Wastewater facilities can be expanded to accommodate surrounding dwellings

- Biogas generation reduces reliability towards energy supply (reducing costs)
- Renewable energy can be utilized for processing and home use


Socio-Economic & Environment

- Increased production & income
- Increased investment capability
- Diversified production (NURDS)
- Increase of jobs
- Strengthening of local food systems
- Increase of export opportunities
- Increased climate change resilience

FRUIT & THE WFE-NEXUS

