

20th AfWA International Congress and Exhibition 2020 Breaking new grounds to accelerate access to water and sanitation for all in Africa

Assessment of physical conditions and proposed Best Management Practices of domestic storage tanks supplied by a water utility in a rapidly growing City

23rd – 24th February 2020, Kampala, Uganda

MAKOKO ENOCH WASOLO

PRESENTATION OUTLINE

- Study Background
- Study Objective
- Methodology
- Findings
- Suggested Best Management Practices (BMPs)
- Study Limitations
- Conclusions

STUDY BACKGROUND

- Need to have reliable potable water -Use of water storage facilities (Malanda & Louzolo-Kimbembe, 2014).
- Tank conditions Ignored (EPA, 2002; Schafer & Mihelcic, 2012).
- Maintaining water quality Challenge due to factors such as sediment, improper hygienic management (Chalchisa et al., 2017; EPA, 2002).
- Approx 80% of diseases worldwide -Use of unsafe drinking water or inadequate sanitation practices (WHO, 2003).

- Water quality in storage facilities of NWSC customers is questionable – Need for baseline information and tank management practices.
- Numerous complaints about contaminated water in Kampala -2015. Over 80% were of water from storage tanks (NWSC, 2015).
- NWSC doesn't have mandate to monitor it (Water Act, 2000).
- Need to assess physical conditions and propose Best Management Practices of domestic storage tanks supplied by a water utility in a rapidly growing City – Kampala, Uganda.

STUDY OBJECTIVE

General Objective

- Assess physical conditions and propose Best Management
 Practices of domestic storage tanks supplied by a water utility in a rapidly growing City Kampala, Uganda.
 Specific Objectives
- Assess physical conditions of the domestic water storage tanks for NWSC Customers in Central Division of Kampala City.
- Propose the Best Management Practices for domestic water storage tanks for a water utility Customers.

METHODOLOGY

- Study Area
- Conducted in East Africa, Uganda, Kampala District, Kampala Capital City, in the Central Division.
- 5 divisions of; Central, Kawempe, Makindye, Lubaga & Nakawa.
- Central Division 6 wards of; Old Kampala, Nakasero, Kololo, Kamwokya, Kisenyi & Industrial Area

ADMINISTRATIVE DIVISIONS IN KAMPALA

METHODOLOGY

Data Acquisition and Analysis

Data collection	Data Collection Sheet (DCS)	Sanitary Inspection Form (SIF) Risk Scores: Range of o-10, o=low and 10=critical. Total risk – Summed risk scores; o-17 (Low), 18- 35 (Medium), 36-53 (High), 54-70 (Critical).			
Geographical coordinates	Handheld Global Positioning System				
Laboratorywork	(NWSC) - Gaba Water Treatment Complex Laboratory.				
Sample analysis	Standard Methods for Examination of Water and Wastewater" (APHA, 2015).				
Data analysis	STATA software version 13.0 (StataCorp, 2013), & ArcGIS software version 10.2.1 (ESRI, 2014).				

RESULTS AND DISCUSSION

	Water					
Sanitary Condition $(n = 372)$		Ye	es	Ν	n - value	
Janitary Con	artion (n -3/2)	Number	%	Number	%	p - value
	Concrete	23	92	2	8	0.001*
Type of tank	Metallic	8	44	10	56	
	Plastic	279	85	50	15	
	Elevated	² 57	82	55	18	0.279
Position of tank	Ground	32	84	6	16	
	Underground	21	94	1	5	
Age of the tank	0 - 5	133	86	21	14	0.019*
	5 - 10	88	88	12	12	
	>10 years	89	75	29	25	
	Never	196	77	60	23	0.001*
Cleaning frequency	Once a year	102	98	2	2	
	More than once	12	100	0	0	
Cracked	No	306	85	54	15	0.001*
	Yes	4	33	8	67	
Leaking	No	303	85	52	15	0.001*
	Yes	7	41	10	59	
Covered	No	4	9	39	91	0.001*
	Yes	306	93	23	7	
Presence of algae	No	238	97	9	3	0.001*
	Yes	72	58	53	42	
Duct on Chudro	No	122	97	4	3	0.001*
Rust or Sludge	Yes	188	76	58	24	

RESULTS AND DISCUSSION

- Most tanks in the study area were plastic (88%), elevated (84%), and below 5 years old (41%). 69% of the domestic water storage tanks were not cleaned, 3% of the tanks were cracked, 5% were leaking, 12% were not covered, 34% had algal growth, and 66% had rust or sludge.
- Plastic tanks are frequently used for domestic water storage, perceived to be durable, safe, cost-effective and easily available in a wide range of sizes (Aish, 2013).
- There was a statistically significant relationship (p=0.001) between tank physical conditions and quality of stored water.
- Two of six Wards had high levels of water contamination in relation to poor sanitary conditions and *E. coli* contamination.

RESULTS AND DISCUSSION

9.0

Kilometers

9.1 - 12.0 12.1 - 14.5 14.6 - 16.5 16.6 - 22.0 22.1 - 24.0

Map showing *E. coli* contamination risk score for combined (dry and wet) seasons

Map showing sanitary conditions risk score for both wet & dry seasons

0.5

- Best Practice Manual for Domestic Water Storage Tanks
- Monitoring Tools;
- 1)Daily Duties (By Owner, Responsible Person)

DAILY CHECKLIST							
Date:		Response		Possible	Corrective Action Taken by		
Check					Cause	Owner/Responsible Person	
Is the tank overflowing?	Yes	נ	No	Π			
Is the tank leaking?	Yes		No	H			
Is water level within the required	Yes	ו	No	М			
range?							
Are the warning lights in normal operating mode?	Yes	[]]	No				

2)Weekly Duties (By Owner, Responsible Person/Technician)

WEE Date:	WEEKLY CHECKLIST Date:							
No	Defects Check	Nature of defect	Repairs Done	By Who				
1								
2								
3								
Com	ments:							

3)Monthly Duties (By Owner, Responsible Person/Technician/Entity)

M Da	MONTHLY CHECKLIST Date:									
W	Water Quality Check									
#	Water (m ³)	Level	No of samples	Analysis needed	Parameters for analysis:	Sample Analysis Lab Name				
1					Bacteria (B)					
2						Certified for notable water				

4)Quarterly Duties (Owner, Technical/Responsible Person/Entity)

QUARTERLY INSPECTION REPORTING							
Inspection By (Owner,		Technical/Resp	Technical/Responsible Inspection Date:		te:		
Person/Entity):				•			
				_			
Sonitory Inspection	n Chaekliet		Was		Inspection Results		
Sanitary Inspection Checklist		performed?		Unsanitary		Corrective	
				Condition		Action Taken	
Examine all tank op	enings (if ar	y) such as vents,	Yes No	\Box	Yes No	Π	Yes No
overflows) if they as	re properly s	screened.					
Examine for block	age or tea	rs of vents and	Yes No	\square	Yes No	\Box	Yes No
screens							
Examine for any det	erioration in	the tank walls or	Yes No	\square	Yes No	\square	Yes No

Inspection Protocol

GENERAL INFORMATION				
Area:				
Contact Person:	Address:			
Tank ID:				
Tank Location:		Tank Material:		
Tank Age:				
Building Occupancy:				
Multiple Dwelling	Commercial	Mixed Use	□ Other:	

INSPECTION REPORTING			
Was a tank inspection performed? □ Yes □ No	Inspection By (Perso	Inspection Date:	
Sanitary Inspection	Was examination	Inspection Results	

Risk Prediction Checklist

GENERAL INFORMATION		
Area:		
Tank Name:	Tank ID:	
Tank Location: Tank Material:		
Tank Age:		
Proposed Checking Date:	Actual Checking Date:	
Name of Person Checking:	Title of Person Checking:	
I certify that this information is complete	e and accurate: Date:	

OVERALL TANK CONDITION		
Risk Check	Response	Risk Score
Is the tank covered?	Yes No	

CONCLUSION AND RECOMMENDATION

 Physical conditions of domestic water storage tanks for Customers of a water utility had an effect on the water quality, causing it not to meet the required Uganda Standards and WHO Guidelines for drinking water under certain conditions.

 Regular multi-level maintenance and routine water quality checks following proposed Best Management
 Practices should be done.

REFERENCES

• Aish, A. M., 2013. Drinking water quality assessment of the Middle Governorate in the Gaza Strip, Palestine. *Water Resources and Industry*. 4, 13-20.

• Chalchisa, D., Megersa, M., and Beyene, A., 2017. Assessment of the quality of drinking water in storage tanks and its implication on the safety of urban water supply in developing countries. *Environmental Systems Research*. 6 (1), 1.

• EPA, 2002. *Finished water storage facilities*. Washington DC, United States Environmental Protection Agency.

 Malanda, N., and Louzolo-Kimbembe, P., 2014. Survey on Storage of Water for Domestic Use in Underground Reinforced Concrete Tanks: The Case of Brazzaville (Republic of Congo). *Open Journal of Civil Engineering*. 4 (01), 13.

• NWSC, 2015. Water Quality Reports. National Water and Sewerage Corporation, Kampala, Uganda.

Schafer, C. A., and Mihelcic, J. R., 2012. Effect of storage tank material and maintenance on household water quality. *Journal: American Water Works Association*. 104 (9).

• Water Act, 2000. *The Water Act, Cap.152; Republic of Uganda*. Government of Uganda, Kampala.

• WHO, 2003. *Water, sanitation and health.* Geneva, World Health Organization.

20thAfWA CONGRESS

-YOU ARE WELCOME -