

20th AfWA International Congress and Exhibition 2020 Breaking new grounds to accelerate access to water and sanitation for all in Africa

IMPROVING DRINKING WATER AFFORDABILITY AND ACCESSIBILITY THROUGH ENERGY EFFICIENCY IMPROVEMENT-LESSONS AND EXPERIENCES FROM NWSC-KAMPALA

23rd – 24th February 2020, Kampala, Uganda

ENG.ANDREW MUHWEZI

INTRODUCTION

CONTEXT

• SDG 6:

"Target 6.1: Achieve Universal and equitable access to safe and affordable drinking water for all' (<u>https://sdgcompass.org/</u>)

Water-Energy Nexus: Symbiotic relationship

"Water is needed to generate energy and energy is needed to deliver water for human use and treat waste water before return to the environment" (<u>https://www.energy.gov/sites</u>)

Energy Efficiency and Climate Change

"Energy Efficiency lowers emissions. Energy consumption and related emissions would be 60% higher than they are and consumers would be paying \$800 billion more per year in absence of investments in energy efficiency improvement" (<u>https://www.triplepundit.com/</u>)

DEFINITION OF KEY TERMS

• ACCESSIBILITY:

Safe water within 1 km of the dwelling or 30 minutes round trip(WHO)

• AFFORDABILITY:

Defined by affordability index- compares the water bill of a household to its disposable income (<u>http://www.ciheam.org/</u>)

DRINKING WATER:

Safe water that does not represent any significant risk to health over a lifetime of consumption (WHO)

• ENERGY EFFICIENCY:

Lowering demand through technological changes (its different from conservation-which is behavioral based) (Katte Zerrener, 2020, https://www.triplepundit.com/)

NWSC'S JOURNEY TO ENERGY EFFICIENCY

Foot Print: 256 towns todate (up from 23 towns in 2013)

INDEXATION OF TARIFF: ENERGY IS A FACTOR

- The tariff remained unchanged from 1994 to 2002
- As a result, the tariff was eroded by almost 45%
- In order to maintain the real value of the tariffs, NWSC adopted an indexation policy starting 2002.
- Tariffs are indexed against;
- Domestic inflation
- Foreign inflation
- Exchange rate changes
- Electricity price changes

Indexation formula T1 = T0 ($a\Delta I + b\Delta FI\Delta FX + c\Delta K$

PROBLEM STATEMENT

--Water is a social good/human

- -Tariff not full cost recovery
- -Energy is expensive and impacts on the surplus/bottom line/ cash operating margin

2019 INDUSTRIAL HV TARIFF VARIATION(ERA-UGANDA)

Month		Tariff charge per unit kWh (Ugx)				
	Shoulder	Peak	Off-peak			
January-2019	389.1	503.6	254.2			
February-2019	<mark>377.9</mark>	<mark>490.9</mark>	<mark>259.1</mark>			
March-2019	<mark>377.9</mark>	<mark>490.9</mark>	<mark>259.1</mark>			
April-2019	<mark>377.9</mark>	<mark>490.9</mark>	<mark>259.1</mark>			
May-2019	<mark>375.1</mark>	<mark>487.2</mark>	<mark>241.7</mark>			
June-2019	<mark>375.1</mark>	<mark>487.2</mark>	241.7			
July-2019	<mark>375.1</mark>	<mark>487.2</mark>	241.7			
August-2019	<mark>369.5</mark>	<mark>480.0</mark>	236.7			
September-2019	<mark>369.5</mark>	<mark>480.0</mark>	236.7			
October-2019	<mark>369.5</mark>	<mark>480.0</mark>	236.7			
November-2019	<mark>367.6</mark>	<mark>477.5</mark>	<mark>236.3</mark>			
December-2019	<mark>367.6</mark>	<mark>477.5</mark>	<mark>236.3</mark>			
Average	374.3	486.1	244.9			

OBJECTIVES

Specific energy consumption (kWh/m3)

Specific energy cost (shs/m3)

SPECIFIC ELECTRICITY COST (UG.SHs)-PER PLANT

ENERGY EFFICIENCY IMPROVEMENT APPROACH

Team: Stand alone energy management team/ mainstreamed team?

Energy management mainstreamed in O&M structure

- Management support
- Systems and Processes
- Technology
- Financing
- Partnerships

MATERIALS AND METHODS

- Data Analysis: Track performance, Identify hot spots
- Energy Audits (Preliminary and Comprehensive):
- Pump Efficiency Tests: Strengthens evidence base for O&M decision making.
- O&M Practices: PPM, Overhauls, Pump Replacements
- Non-revenue water Management: Asset management practices to reduce product losses and increase revenue.
- Automation: Process efficiency= energy efficiency= cost saving

Pump Hydraulic Efficiency η Pump 68.5% з. System Friction Losses (Discharge Side) : -25.0 m of head = Pump Discharge Head - Static Discharge Head С 0 RESERVOIR STATIC DISCHARGE HEAD 115 m PRESSURE 90 m GAUGE 895 m3/h FLOW TOTAL STATIC HEAD PUMP METER DISCHARGE 117 m PUMP INLET С 0 PUMP

Pump Efficiency Calculation Tool

- Inputs

Pump Efficiency Calculation Tool - Inputs			Seal SUSTAINABLE ENERGY AUTHORITY OF IRELAND				
Pump / Pump Station	: 0	GUNHILL 2					
Location	: 0	GABA 3 CWPS					
MPRN	:						
Date	:	3/8/2019	ENTER DATA IN THESE CELLS ONLY				
MOTOR							
This section calculates the efficiency of the motor that drives the pump. You can enter the motor power from the nameplate data or from measurement (meter)							
Rated Motor Power	:	kW	Enter from nameplate, if rated in Horsepower, use 1 HP = 0.746 kW				
or							
Actual Motor Power Consumption	:	kW	From measurement (meter)				
or							
Voltage	:	2946.0 V	From measurement (meter)				
Current	:	74.0 A	From measurement (meter)				
kVA	:	377.6 kVA					
Power factor (cos ψ)	:	0.9	If VSD, then = 1 Non-VSD Maximum = 0.83 Non-VSD Typical Full Load = 0.78-0.81 Non-VSD Typical Half Load = 0.70				
and							
Motor Efficiency n	:	95%	From manufacturer's data sheets (try www search for motor type)				

Measured efficiency percentages for some pumps					
Gabba 2		Gabba 3			
Muyenga 1	69.5%	Muyenga 1	57.1%		
Muyenga 2	71.8%	Muyenga 4	82.5%		
Muyenga 3	70%	Gunhill 1	50.9%		
Muyenga 4	80%	Gunhill 2	75.9%		
Muyenga 5	85.4%	Gunhill 3	65.1%		
Raw water (pump 1)	58.1%	Raw water (pump 1)	78.1%		
Raw water (pump 1)	63.4%	Raw water (pump 1)	73.1%		
Raw water (pump 1)	60.4%	Raw water (pump 1)	72.3%		

PUMP OVERHAULS

ABOUT NRW

RESULTS AND DISCUSSION

- Reactive energy savings:
- Carbon footprint reduction (Demand side optimization). Mitigates climate change and reduces pressure on water supplies
- Sustainability- enhances commercial viability of the organization
- Improved asset management practices

CARBON FOOT PRINT

CONCLUSIONS

- Energy is needed to make water available at points of use.
- Energy is a cost in the water accessibility equation
- Inefficient use of energy increases this cost and is a cost driver to safe water access ultimately making the water unaffordable.
- Utilities need to save money to remain commercially viable and be able to invest in safe water extension.
- Cost containment through energy efficiency optimization has been one of NWSC's strategies to remain commercially viable while supplying a social good to the country.

20thAfWA CONGRESS

-YOU ARE WELCOME -