

20<sup>th</sup> AfWA International Congress and Exhibition 2020 Breaking new grounds to accelerate access to water and sanitation for all in Africa

Development of Optimal Pump Schedules For Improved Energy Efficiency in Water Supply Systems



23<sup>rd</sup> - 24<sup>th</sup> February 2020, Kampala,

**KIKOMEKO SAMUEL** 

# Introduction

- Water utilities are under pressure from regulators and environmentalists to reduce energy costs.
- This study therefore explored how pump optimization can enable deal with challenges of high energy costs and improve water utility performance.
- This was based on the case of the Gabba Muyenga subsystem of National Water and Sewerage Company (Uganda)



# **Objective**

The Government of Uganda is promoting energy efficiency in recognition of the benefits among which are energy savings associated with the reduction of electricity consumption for the existing consumers and availing this to meet the incremental demand which would otherwise have to be met by investment.

# **Problem Statement**

Globally, the increasing costs of water supply coupled with the recently policy on sustainability compel water utilities to improve efficiency of their water distribution systems by reducing energy costs. The irony however, is that many water utilities particularly in the developing countries continue to operate based on trial and error methods, resulting into system failures

# Likely consequences of trial and error operations



# Procedure for formulation of optimal pump schedules

- Pump trial tests were performed on the selected sample pumps by applying one or a combination of tank level control and pressure control strategies.
- Scheduling period was divided into peak, shoulder and off-peak regimes, Secondly, a solution was to be hydraulically feasible that is to say that there are no nodes in the network experiencing negative and excessive pressures



# Application of the formulated schedules on a real case network

The formulated optimal pump schedules were applied to the case study as a proof of concept through installation of tank level probes/sensors at Muyenga reservoirs and pressures control triggers installed at the inlet point of the DMA under investigation to trigger pumps on/off based on the applied schedule protocols and set constraints





### Level-controlled triggers at Muyenga

#### Pressure-controlled triggers at Mbuya Booster

# Impact of pump operations on energy cost

| Model 1 Energy | Consumption | based on | time of t | the day | tariff |
|----------------|-------------|----------|-----------|---------|--------|
|                |             |          |           |         |        |

| Year          | Electricity Consumed (million kWh) Amount |                   |                   | Amount | Cost of Energy |           |
|---------------|-------------------------------------------|-------------------|-------------------|--------|----------------|-----------|
|               | Shoulder                                  | Peak              | Off-peak          | Total  | (UGX,Million)  | (UGX/kWh) |
|               | ( <b>R</b> <sub>1</sub> )                 | (R <sub>2</sub> ) | (R <sub>3</sub> ) |        |                | , , ,     |
| 07/11/2013 to | 5.5 (29%)                                 | 4.81(26%)         | 8.49 (45%)        | 18.796 | 4144.11        | 220.48    |
| 08/10/ 2014   |                                           |                   |                   |        |                |           |
|               |                                           |                   |                   |        |                |           |
| 06/11/2012 to | 8.24(48%)                                 | 4.63(27%)         | 4.14(24%)         | 17.006 | 3949.67        | 232.25    |
| 07/10/ 2013   |                                           |                   |                   |        |                |           |

Model 2 Energy Consumption based on time of the day tariff

| Year          | Electricity Consumed (million kWh) |                             |                   | Amount | Cost of Energy |           |
|---------------|------------------------------------|-----------------------------|-------------------|--------|----------------|-----------|
|               | Shoulder                           | houlder Peak Off-peak Total |                   | Total  | (UGX, Million) | (UGX/kWh) |
|               | (R <sub>1</sub> )                  | (R <sub>2</sub> )           | (R <sub>3</sub> ) |        |                |           |
| 07/11/2013 to | 3.09 (25%)                         | 3.17(25%)                   | 6.18 (50%)        | 12.433 | 2728.10        | 219.41    |
| 08/10/ 2014   |                                    |                             |                   |        |                |           |
|               |                                    |                             |                   |        |                |           |
| 06/11/2012 to | 2.17(27%)                          | 2.01(25%)                   | 3.81(48%)         | 7.99   | 1731.32        | 216.69    |
| 07/10/ 2013   |                                    |                             |                   |        |                |           |

120 100 % Tarriff usage 80 60 Off peak consumption peak consumtion 40 shoulder consumption 20 0 station 2 station 2 station 2 station 5 statio

Bar Chart showing time of day (TOD) energy consumption break-up for model 3 pumps

## **Modeling for pump efficiency determination**

- A regression analysis with a linear relationship to predict energy use efficiency
- The resultant model took the form

 $Y = \beta_0 + \beta_1 x$ 

 Where Y was the totalized power consumed, X was the totalized water pumped, and the regression coefficients.

 $D = (\beta_1 * 100)$ 

> The value D was the percentage of energy efficiency.

# linear regression analysis for model 1 energy efficiency analysis



specific energy consumption (kWh/m<sup>3</sup>) of model 1 high lift pumps was satisfactory i.e. Energy Efficiency rate of model 1=74.2 % for a four combination; however the goodness of fit of the regression line which is measured using the coefficient of determination  $(R^2 = 68.1\%)$ was rather low probably due to the marginal drop in efficiency the number of as pump combination increased which was due to low output and increased system resistance

kWh —— Linear (kWh)

## linear regression analysis for model 2 energy efficiency analysis



The specific energy consumption (kWh/m<sup>3</sup>) of model 2 high lift pumps was high in comparison to model 1 pumps This low efficiency rate for model 2 pumps was attributable to low output of the pumps which was a result of mismatch between the suction and delivery pipe sizes and also as a result of operating more pumps in parallel.

### linear regression analysis for model 3 energy efficiency



results linear The from regression relationship could not provide a single uniform efficiency rate for all sampled pumps, this implied that scheduling based on time of the day tariff and network remodifications for improved (kWh/m<sup>3</sup>) could only apply to individual stations , based on this background the possibility of allocating pressure controls in the network by considering the water demand required by users firstly as deterministic and subsequently as probabilistic was applied to trigger pumps on and off.

# Formulation of optimal pump schedules for energy efficiency

Formulation of optimal pump schedule for model 1 pumps

#### Operating cost of pumps based on tariff structure

| Tariff   | Operating Cost in 000'UGX/hr        |                                     |                                     |  |  |  |  |
|----------|-------------------------------------|-------------------------------------|-------------------------------------|--|--|--|--|
|          | Operation of 2 pumps in<br>parallel | Operation of 3 pumps in<br>parallel | Operation of 4 pumps in<br>parallel |  |  |  |  |
| Shoulder | 214.861                             | 307.549                             | 394.351                             |  |  |  |  |
| Peak     | 266.151                             | 380.965                             | 488.488                             |  |  |  |  |
| Off Peak | 150.860                             | 215.939                             | 276.885                             |  |  |  |  |

#### Details of Output and energy per day

| Measuredparameters                    | Operation of 2 pumps in<br>parallel | Operation of 3 pumps in<br>parallel | Operation of 4 pumps in<br>parallel |
|---------------------------------------|-------------------------------------|-------------------------------------|-------------------------------------|
| Output of<br>pumps,m <sup>3</sup> /hr | 1788                                | 2454                                | 2925                                |
| Power consumption<br>,kW              | 1115                                | 1596                                | 2046                                |

### Con't

Based on the data generated, an <u>energy decision support</u> was developed And the impact of each schedule implemented is briefly shown below.

#### Cost and output per day based on number of operating hours (as at 28<sup>th</sup> January 2015)

÷

| Peak<br>6 | Off peak<br>6   | Total 6   17 1                            |
|-----------|-----------------|-------------------------------------------|
| 6         | 6               | 6<br>17<br>1                              |
|           | 6               | 17                                        |
|           |                 | 1                                         |
|           |                 |                                           |
| 10726     | 14724           | 55369                                     |
| 6690      | 9576            | 35868                                     |
| 1596903   | 1295633         | 6669928                                   |
|           | 6690<br>1596903 | 10720 14724   6690 9576   1596903 1295633 |

#### Optimized schedule (cost and output per day based on number of operating hours)

| Tariff                                  | Shoulder | Peak    | Off peak | Total   |
|-----------------------------------------|----------|---------|----------|---------|
| Operation of 2 pumps in parallel (hrs.) | 2        | 6       |          | 8       |
| Operation of 3 pumps in parallel (hrs.) | 10       |         |          | 10      |
| Operation of 4 pumps in parallel (hrs.) |          |         | 6        | 6       |
| Output per day,m <sup>3</sup>           | 25662    | 10726   | 19531    | 55918   |
| Energy per day kWh                      | 16594    | 6690    | 13424    | 36708   |
| Total cost per day, UGX                 | 3197664  | 1596903 | 1816301  | 6610868 |



# Impact of model 3 optimal scheduling operations on energy costs



Figure 34: Impact of pressure modulation on water and energy savings

# **Energy** saving

### **Energy savings in the DMA**

- Energy cost savings per day: UGX950, 400
- Annual energy savings: 0.068 Million kWh
- Annual cost savings @ 80% realization factor: UGX15 million (@UGX 220.7 per kWh)
- Cost of implementation: UGX 6.5 million
- Simple payback period: 1.2 years

# Conclusion

- Power savings are predominantly from shifting pumping from high day tariffs to lower night tariffs.
- Assessment and comparison of pumping cost per unit of water i.e. UGX/000'm<sup>3</sup> and kWh/000'm<sup>3</sup> indicates the level of efficiency of the sub system and system on a whole
- Suitable pump sizing results into significant energy savings
- Significant energy cost savings can be obtained by introducing pressure management
- Scheduling is more appropriate if supply exceeds demand

# Recommendations

- It is recommended to optimize operation of pumps utilizing time of the day tariff so as to save the operating cost.
- It is recommended to install suitable sized pumps for operations
- It is recommended to implement intelligent pressure management

# 20thAfWA CONGRESS

— YOU ARE WELCOME —